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Abstract

The noise emitted by a railway bridge or viaduct under traffic can, in principle, be calculated using finite element

techniques that take account of the specific geometry of the bridge, but for high frequencies, where the modal density is

large, this can be very computationally intensive. This means that the benefits of performing large parametric design

studies are often overshadowed by the time taken to complete them. Here, a rapid calculation model is described for the

vibration power transfer from the rail into the bridge that is coupled with the SEA method for vibration power

propagation and noise radiation. This relies less on the exact geometry of the bridge and more on its general

characteristics. The model has recently been developed to represent the coupling between the rail and bridge at low

frequencies and the mobility of the support girder at high frequencies with greater detail. It is used here to evaluate the

noise and vibration of a concrete–steel composite viaduct. The predictions are then compared with real experimental noise

and vibration data taken from the viaduct under traffic.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The noise levels occurring when a train passes over a bridge are usually greater than those for when a train
passes on normal track by up to 10 dB [1,2]. Due to the combination of road and rail traffic that exists in urban
environments, many bridges can be found in heavily populated and therefore noise-sensitive areas. There is
clearly a need to understand the processes behind bridge noise in order to be able to put measures in place to
mitigate such noise, where appropriate.

The generation of bridge noise can be split into three steps [2]. Wheel/rail interaction causes the rail to
vibrate. The vibration is then transmitted through the track fastening to the bridge structure. The energy is
then transmitted throughout the various structural components of the bridge causing them to vibrate and
hence radiate sound.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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As the fitting of rail-fastening components to an existing track form, or failure to meet noise regulations
with a new track form, can be costly, it is important to be able to predict accurately the effectiveness of noise
reduction techniques.
2. Approaches to the calculation of railway bridge noise

Bridge noise may be predicted using a large database of measurements from which the noise level variation
with simple gross parameters can be found empirically [1]. This method is efficient computationally and
suitable for some uses. However, empirically determined models do not allow design changes to be studied and
it is impossible to measure novel bridge designs for which measurement data cannot be obtained. Finite
element analysis is used for many aspects of bridge structure design [3]. It may be thought of as a means of
providing parameters such as the point mobility required for a noise model. However, a large bridge can have
many modes below even the lowest audible frequency. An approach that takes these factors into consideration
is to model the bridge with an analytical track model to calculate the power input to the bridge then couple
this to a simple SEA model to calculate the power distribution among the various components of the bridge.
Janssens and Thompson [2] and Harrison et al. [4] both use this method to calculate the noise radiated by a
number of elevated railway structures to a reasonable level of accuracy. Based on this previous work,
Thompson and Jones [5] developed a model called NORBERT (Noise Of Railway Bridges and Elevated
Railway structures).

The combined wheel and rail roughness is used as the input to the model. Roughness values are either used
from a database or specifically measured roughness spectra can be input. Using the roughness, the vibration of
the rail and wheel is calculated from the rail and wheel mobility and the speed of the rolling stock. Rail
vibration is considered in the vertical direction only. The rail is modelled as a Timoshenko beam continuously
supported on top of a rigid surface by a resilient layer. The force input to the bridge is assumed to be the
resulting force transmitted through the resilient layer if the rail is subject to the calculated rail vibration. From
this the power input to the bridge is calculated as, [2],

Pinput ¼ F 2N RefY bridgeg, (1)

where F2 is the mean square force at the base of the track supports, Ybridge is the point mechanical mobility of
the bridge deck and N is the number of forces between the track and bridge deck.

Having calculated the total power input to the bridge structure, the distribution of power in the bridge
structure is determined using a simple form of statistical energy analysis, which assumes equipartition of
energy among the components of the bridge. The SEA model of the bridge structure itself is made up of only
plate and beam components. Using the radiation efficiencies of each component, the total sound power
radiated by the bridge is calculated. Finally, a rolling noise database is accessed that contains calculations for
the rolling noise of several wheel and track combinations calculated by using the TWINS software [6,7]. The
correct values are accessed and corrected for differences in the rail fastener stiffness and the rolling noise is
output in terms of sound power per unit length. The sound powers radiated by the bridge, rail and wheels are
then summed to give a total noise from the bridge.

A critical component for an accurate bridge noise model using the above methods is the power transfer
calculation in Eq. (1) and more specifically an accurate model for the bridge mobility Y bridge. In most railway
bridges, box section girders or a small number of I-section beams or thick plates supports the track. In either
case, an estimate of the mechanical mobility of a point on the deck of the bridge can be based upon an estimate
of the average vertical mobility of an I-section beam or plate. Use is made of the result that the frequency
average point mobility of a finite beam or plate can be approximated by the point mobility of an infinite beam
or plate [8] and the mobility of the bridge deck is assumed to be either an infinite I-section beam or thick plate
depending on the geometry, material properties and wavelengths in the bridge. Cremer and Heckl [9] present
equations for the point mobility of a number of infinite structural components including an infinite
Timoshenko beam and thick plate that can be used in the model. The equations in Ref. [9] give good
approximations for the mobility of infinite beams assuming that no modal deformation occurs in the beam
cross-section. However for beams with the typical dimensions found in bridges and viaducts, cross-sectional
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deformation begins to occur at around 500Hz [10] and a more appropriate ‘high frequency’ model for the
beam that considers this effect is required.

Another concern with using Eq. (1) is that, at all frequencies, the force is obtained by assuming the rail is
modelled as a continuously supported infinite beam on a rigid foundation with a correction for the actual
discrete nature of the supports. There are three inherent problems with this assumption. Firstly, Eq. (1)
assumes that the rail moves independently from the bridge at all frequencies. In reality the motion in the
bridge and the rail will remain coupled up to a particular frequency known as the decoupling frequency which,
for a typical bridge with very stiff rail pads, may occur above 500Hz [11]. Therefore the assumption in Eq. (1)
may be incorrect across a wide frequency band. Secondly, it has been found that assuming the motion of the
rail and bridge is independent below the decoupling frequency over-estimates the power transfer into the
bridge [12]. Finally, the resonance effects due to the finite length of the bridge are likely to have an important
effect on the amount of power input to the bridge at low frequencies where the wavelengths in the bridge
structure are long. The use of an infinite approximation for this frequency region is an over-simplification.
Therefore a power transfer calculation that takes into account all these factors for frequencies below the
decoupling frequency is sought.

3. An improved model for the vibrational power transfer from the rail to the bridge at low frequencies

The mean square force at the base of the track supports, used for the power input calculation in Eq. (1), is
calculated assuming that the rail moves independently from the bridge at all frequencies. To improve upon
this, a model of the rail and bridge as two Timoshenko beams coupled by a continuous resilient layer is
considered here. The rail and bridge will act as a single composite beam up to a decoupling frequency o0 [11]
given by,

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

1

ms

þ
1

mr

� �s
, (2)

where s is the stiffness per unit length of the track supports and ms and mr are the mass per unit length of
the rail and bridge beams, respectively. It is only at frequencies higher than o0 that the assumption inherent in
Eq. (1) is valid. Furthermore, unlike plain track, bridges are finite structures and resonance effects due to the
ends of the bridge are likely to be large, particularly at low frequencies.

An improved model for the rail coupled to the bridge is described below that takes into account the coupled
motion of the rail and bridge below the decoupling frequency and the resonance characteristics of the finite
structure in which the track is modelled as two finite simply supported Timoshenko beams (representing the
rail and bridge) continuously connected by a resilient layer (representing the track fastenings). The use of a
continuous connection is justified, as the effects of the discrete supports are only significant around 1 kHz.

3.1. Equations of motion

Consider the system shown in Fig. 1 consisting of a finite Timoshenko beam of length L ¼ LR þ LL, with
bending stiffness Bs ¼ EIs, representing a rail connected via an elastic layer of stiffness per unit length s to a
F0

source beam (rail)
resilient layer

receiver beam (bridge)

x = 0x = -LL x = LR

u(x)

v(x)

Fig. 1. Two finite Timoshenko beams connected by a continuous resilient layer used to model the rail coupled to the bridge.
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second finite Timoshenko beam of equal length with bending stiffness Br ¼ EIr, representing a bridge beam.
Both beams are simply supported at x ¼ �LL and x ¼ LR. Damping may also be included by making s, Bs

and Br complex. The system is excited at x ¼ 0 by a force F0e
iot resulting in vertical displacement of the source

and receiver beam uðxÞ and vðxÞ, respectively. Assuming the elastic layer is soft in shear with no stiffness in the
horizontal direction, only vertical motion need be considered.

Considering first a differential element of the source beam, the following set of four partial differential
equations can be obtained [13]:

M � Bs

qf
qx
¼ 0, (3)

S � ksAsG f�
qu

qx

� �
¼ 0, (4)

S �
qM

qx
þ rIs

q2f
qt2
¼ 0, (5)

qS

qx
þ ms

q2u
qt2
þ sðu� vÞ ¼ 0, (6)

where ms, G, As, rs, and ks are the mass per unit length, shear modulus, cross-sectional area, density and shear
co-efficient [14] of the beam, respectively. M is the bending moment; S the shear force acting against the shear
loading and f is the slope of bending in the beam. Eqs. (3) and (5) refer to the rotational motion in the element
while Eqs. (4) and (6) refer to the transverse motion of the element. Eliminating S, M and f, and repeating the
above for the receiver beam yields the simultaneous equations of motion of the system. Assuming a solution of
the form u; vðx; tÞ ¼ Aebxeiot, the equations of motion can be written in matrix form as

½½A�b4 þ ½B�b2 þ ½C��
u

v

� �
¼

0

0

� �
, (7)

where

½A� ¼
Bs 0

0 Br

" #
, (8)

½B� ¼

rIs 1þ
E

Gsks

� �
o2 �

Bss

GsAsks

þ s
Bss

GsAsks

� s

Brs

GrArkr

� s rIr 1þ
E

Grkr

� �
o2 �

Brs

GrArkr

þ s

2
6664

3
7775, (9)

½C � ¼

�mso
2 þ

r2I s

Gsks

o4 þ s 1�
rIso2

GsAsks

� �
�s 1�

rIso2

GsAsks

� �

�s 1�
rIro2

GrArkr

� �
�mro

2 þ
r2Ir

Grkr

o4 þ s 1�
rIro2

GrArkr

� �
2
6664

3
7775. (10)

Eq. (7) can be solved as a quadratic eigenvalue equation in b2 to yield four eigenvalues for b2 at each
frequency. These correspond to four waves valid for x!1 and another four ð�bÞ valid for x!�1. Each
has the corresponding eigenvector ðun; vnÞ.

3.2. Response to a point force

The response of each beam in the system to a point force F0e
iot at x ¼ 0 is made up of 16 wave components,

as shown in Fig. 2, consisting of near-field and propagating waves travelling from the load and reflected at
each end. The full solution for the displacement to the left of the forcing point (with implicit eiot dependence)
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Fig. 2. The 16 wave components present in each beam.
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in each beam is given by

uLðxÞ ¼ A2u1e
b1x þ A4u1e

�b1x þ A6u2e
b2x þ A8u2e

�b2x

þ A10u3e
b3x þ A12u3e

�b3x þ A14u4e
b4x þ A16u4e

�b4x, ð11Þ

vLðxÞ ¼ A2v1e
b1x þ A4v1e

�b1x þ A6v2e
b2x þ A8v2e

�b2x

þ A10v3e
b3x þ A12v3e

�b3x þ A14v4e
b4x þ A16v4e

�b4x. ð12Þ

Similarly, the displacement in each beam to the right of the forcing point is given by

uRðxÞ ¼ A1u1e
�b1x þ A3u1e

b1x þ A5u2e
�b2x þ A7u2e

b2x

þ A9u3e
�b3x þ A11u3e

b3x þ A13u4e
�b4x þ A15u4e

b4x, ð13Þ

vRðxÞ ¼ A1v1e
�b1x þ A3v1e

b1x þ A5v2e
�b2x þ A7v2e

b2x

þ A9v3e
�b3x þ A11v3e

b3x þ A13v4e
�b4x þ A15v4e

b4x. ð14Þ

Substituting Eqs. (11)–(14) in Eqs. (3)–(6) and rearranging yields the rotation angles of the rail fs and bridge
fr in terms of the displacements of each wave n

fsn ¼
GsAsksbnun

GsAsks þ Bsb
2
n þ o2rIs

; frn ¼
GrArkrbnun

GrArkr þ Bsb
2
n þ o2rIs

. (15)

The rotation angle in each beam to the left of the forcing point is given by

fsLðxÞ ¼ A2fs1e
b1x þ A4fs1e

�b1x þ A6fs2e
b2x þ A8fs2e

�b2x

þ A10fs3e
b3x þ A12fs3e

�b3x þ A14fs4e
b4x þ A16fs4e

�b4x, ð16Þ

frLðxÞ ¼ A2fr1e
b1x þ A4fr1e

�b1x þ A6fr2e
b2x þ A8fr2e

�b2x

þ A10fr3e
b3x þ A12fr3e

�b3x þ A14fr4e
b4x þ A16fr4e

�b4x. ð17Þ

The rotation angle in each beam to the right of the forcing point is given by

fsRðxÞ ¼ A1fs1e
�b1x þ A3fs1e

b1x þ A5fs2e
�b2x þ A7fs2e

b2x

þ A9fs3e
�b3x þ A11fs3e

b3x þ A13fs4e
�b4x þ A15fs4e

b4x, ð18Þ

frRðxÞ ¼ A1fr1e
�b1x þ A3fr1e

b1x þ A5fr2e
�b2x þ A7fr2e

b2x

þ A9fr3e
�b3x þ A11fr3e

b3x þ A13fr4e
�b4x þ A15fr4e

b4x. ð19Þ

The unknown wave amplitudes An can be found by applying the following boundary conditions:
(a)
 Continuity of displacement at x ¼ 0.

uLð0Þ ¼ uRð0Þ; vLð0Þ ¼ vRð0Þ. (20)
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Continuity of rotation at x ¼ 0.
(b)
fsLð0Þ ¼ fsRð0Þ; frLð0Þ ¼ frRð0Þ. (21)
(c)
 Continuity of bending moment at x ¼ 0.

bnfsLð0Þ ¼ bnfsRð0Þ; bnfrLð0Þ ¼ bnfrRð0Þ. (22)
(d)
 Displacement at the beam ends.

uLð�LLÞ ¼ uRðLRÞ ¼ vLð�LLÞ ¼ vRðLRÞ ¼ 0. (23)
(e)
 Bending moment at the beam ends.

bnfsLð�LLÞ ¼ bnfsRðLRÞ ¼ bnfrLð�LLÞ ¼ bnfrRðLRÞ ¼ 0. (24)
(f)
 Equating shear forces at x ¼ 0.

Ssð0Þ

GsAsks

¼ ðfsn þ bnunÞ ¼
F

2GsAsks

;
Srð0Þ

GrArkr

¼ ðfrn þ bnvnÞ ¼ 0. (25)
Substitution of Eqs. (11)–(19) into Eqs. (20)–(25) yields 16 simultaneous equations that can be solved using the
matrix method to find the unknown wave amplitudes. Hence the full solutions for the displacement in each
beam can be found.

3.3. Calculation of the power input to the bridge

The power input to a structure due to the action of a point force is given by the real part of the mobility of
the structure multiplied by the mean square force amplitude

Pin ¼
1
2
jF j2 RefY g, (26)

where Y is the mobility of the structure.
The theory in Sections 3.1–3.2 gives a method for calculating the response of the track mounted to a bridge

to a point force at the track. The mobility for each system can readily be calculated and the force is evaluated
from the wheel/rail interaction. Hence the total power input to the lower beam can be found as

Pin ¼
1

2
Re

Z LR

�LL

F�ðxÞ_vðxÞdx ¼
1

2
Re

Z LR

�LL

ðsðuðxÞ � vðxÞÞÞ� _vðxÞdx, (27)

where F� is complex conjugate of the force applied to the bridge beam through the stiffness s of the resilient
layer and _v is the velocity of the bridge beam.

3.4. Results

The model described above was used to obtain values for the real part of the driving point mobility at the
rail head and the power input to the bridge at discrete frequencies in the range 1Hz–5 kHz. The technical data
for the beams used in the model are shown in Table 1. The rail pad stiffness per unit length, s, was 2�
108 N=m2 with a loss factor 0.25. This is typical of fastener systems used on a bridge [15].

Frequency response functions are plotted in Fig. 3 along with results for infinite beams. Considering first the
driving point mobility (Fig. 3(a)) for the infinitely long model, at low frequencies the vibration in the rail and
bridge beams is coupled and the mobility tends to that of the combined rail and bridge beams. The mobility
begins to rise at approximately 20Hz as the motion in the beams starts to become uncoupled. There is a peak
in the mobility at approximately 300Hz. This corresponds to the decoupling frequency as given in Eq. (2). At
frequencies above the decoupling frequency, the motion in the two beams is weakly coupled. As frequency
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Table 1

Properties of beams used in the models

Rail beam Bridge beam

m ðkg=mÞ 54 499

L ðmÞ 16 16

I ðm4Þ 2:4� 10�5 9:33� 10�3

E ðN=m2Þ 2:07� 1011 2:07� 1011

k 0.4 0.6
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Fig. 3. Real part of the driving point mobility against frequency at the rail head (a) and power input to the bridge beam for a 1N input

force on the rail (b). —, two finite Timoshenko beams joined by a resilient layer; ——, two infinite Timoshenko beams joined by a resilient

layer; � � �, combined rail and bridge beams modelled as Timoshenko beams; — � —, rail modelled as a Timoshenko beam.
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increases further, the mobility tends to that of the rail. Now consider the point mobility of the finite case (solid
line), taken at 4m along the span of length 16m. It can be seen that the overall trends of the mobility are as for
the infinite beams. However, the fundamental bending mode and higher order modes of the bridge beam can
be seen in the response below the decoupling frequency. The modal density above the decoupling frequency is
too high to identify the individual modes due to the short wavelengths in the rail.

Looking now at the power input to the bridge (Fig. 3(b)), for the infinite beam the power input to the bridge
decreases slowly with increasing frequency from 1 to 100Hz. There is a peak at the decoupling frequency,
above which the power input to the bridge decreases rapidly with increasing frequency, as the bridge is isolated
from the rail. The resonances of the bridge treated as a finite structure again follow the same trend, but it will
be noted that below the decoupling frequency, individual resonances cause up to 10 dB departure from the
infinite beam behaviour.

4. An improved model for the mobility of a bridge at high frequencies

For the power input calculation in Eq. (1) the point mobility of the bridge can be represented as either an
infinite I-section beam or infinite thick plate. The thick plate model is only used if the lateral distance of the
input force from the web of any support girder is greater than one-quarter of a bending wavelength in the
deck. In many cases this means that the I-section beam mobility model is used up to very high frequencies. As
discussed above, the infinite beam equations given in Ref. [9] do not give accurate results at such high
frequencies due to the local deformation that occurs within the cross-section of the beam. Ref. [10] shows a
method devised to model accurately the mobility of an infinite I-section beam in three frequency ranges. In a
similar way to Ref. [2], at low frequencies the I-section beam is modelled as an infinite or finite Timoshenko
beam as in Ref. [9]. A detailed finite element study of various finite I-section beams identified a mode that
occurs in I-section beams at high frequencies that is independent of the length of the beam and corresponds to
the first occurrence of longitudinal waves within the depth of the beam. The mode, labelled the ‘transitional’
mode marks a distinct change in the behaviour of the beam where the mobility begins to behave as the
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Fig. 4. A 3m length of a wrought iron I-section beam removed from a BR bridge (a). The real part of the driving point mobility of a

3� 1m I-section beam with a 45 cm flange (b): —, measured; — —, predicted.
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mobility of an edge-excited flat plate. An in-depth study of the behaviour of the beam at frequencies above the
transitional mode using a combination of finite element, boundary element and dynamic stiffness methods led
to the derivation of a high frequency infinite beam mobility given by [10]

Y bridge �
1

ðo=4Þðð1� n2Þ=EhwÞ þ ð1=rc2RhwÞ
þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I f Erhf

1� n2

r" #�1
, (28)

where E, r and n are the Young’s modulus, density and Poisson’s ratio of the beam, cR is the Rayleigh wave
speed in the beam, hw and hf are the thickness of the beam web and flange and I f ¼ h3

f =12 is the second
moment per unit width of area of the flange. The first term in Eq. (28) is the mobility of an edge-excited flat
plate as derived by Pinnington [16], modified to take better account of the edge of the plate. The second term
of Eq. (28) is the mobility of the flange modelled as a normally excited infinite flat plate as in Ref. [9].

At mid-frequencies, the mobility of the I-section beam was seen to behave neither like a beam nor an edge-
excited flat plate. In this ‘transitional’ region, the mobility is seen to increase with the square of frequency up
to the transitional mode value [10]. This simple approach was found to describe the mobility in this range well
for a large number of test cases.

Mobility measurements have been performed on a short section of an I-section beam removed from an old
wrought iron railway bridge typical of many across the UK, Fig. 4. The beam is approximately 3m long and
1m deep with a 0.4m wide flange. The thickness of the flange and web, respectively, are approximately 0.04
and 0.03m. The point mobility was measured at a number of points above the web along the length of the
beam. The point mobility was then averaged over all the positions. The average real part of the driving
point mobility is plotted from 600 to 8000Hz in Fig. 4 together with the prediction of the model from [10].
In the prediction, Eq. (28) applies above 1 kHz and the ‘transitional’ region is below this frequency.
The measured results fluctuate around the predicted mobility due to flange resonances, but the mean mobility
is well predicted. Results are not shown at lower frequencies due to the influence of the short length of
the beam.
5. Testing of the improved model using noise and vibration measurements from a steel–concrete composite

viaduct under traffic

This section is concerned with the validation of the bridge noise model described in Section 2 after
modification to include the improvements described. Validation was performed using noise and vibration data
taken from an existing viaduct under traffic together with mobility measurements at the rail head.
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5.1. Test site and method

A diagram of the cross-section is shown in Fig. 5. It consists of an 8m wide concrete deck of thickness 0.4m
supported by two steel I-section beams of 1m depth with a 0.4m wide flange. The thickness of the webs and
flanges are 0.03 and 0.02m, respectively. The viaduct supports two straight sections of track directly fastened
at 0.6m intervals to the concrete deck via resilient rail pads with a stiffness of between 1� 108 and
2� 108 N=m. The viaduct also has a 1m high noise barrier running parallel to one of the tracks. The traffic at
the test site consisted wholly of light rail traffic with an average speed of 52 km/h, each train being 56m long
and made up of four cars.

Firstly, a series of mobility measurements were performed on the bridge in order to determine the
driving point mobility at the rail head for comparison with the finite Timoshenko beam model descri-
bed in Section 3 and to determine the stiffness and damping properties of the viaduct. The mobility was
measured at points directly above the track fasteners and at mid-span between two fasteners and an average
was taken.

Vibration measurements under traffic were made at two positions along the span of the viaduct
(centre-span and quarter-span). The accelerometer positions at each point on the span are shown in
Fig. 5(a). Rail vibration was measured at each rail foot on one track (1. and 2. in Fig. 5). Deck vibration
was measured at the track-centre (4. in Fig. 5) and at a position near the outer edge of the viaduct (3. in
Fig. 5). Noise recordings were also made at a position 5m directly beneath the viaduct. Recordings
were made digitally using a laptop PC running at a sampling frequency of 12 kHz during the passing of
48 trains.

5.2. Results and model validation

5.2.1. Mobility

A problem when predicting the noise and vibration from existing bridges and viaducts is that many of the
parameters needed are not known, such as the stiffness of the track supports and damping in the various
components. In the case of the test viaduct, only the dimensions and materials properties are known. With the
use of a track model, such as the one described in Section 3, curve fitting can be used to extract important
parameters for use in noise and vibration predictions of the viaduct.

Fig. 5(b) shows a plot of the magnitude of the driving point mobility at the rail head against frequency
measured close to the centre of the viaduct. Results are presented within the frequency range 80–800Hz.
Signal-to-noise problems prevented measurement of the mobility outside of this frequency range. However the
range is adequate in order to extract the required parameters for input to the model. The peak at
approximately 310Hz corresponds to the decoupling frequency as described in Eq. (2). Also plotted in
Fig. 5(b) is the spatially averaged magnitude of the driving point mobility predicted using the model described
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in Section 3. The material and geometrical properties of the bridge are known and s is calculated by fitting the
predicted mobility curve to the measured results. This gives a value of 8:4� 107 N=m.

Considering again the measured mobility, from 80Hz to the decoupling frequency the mobility resembles
the region where the rail and bridge motion are becoming uncoupled (Fig. 5(a)). In this region no prominent
bending modes in the bridge are seen, suggesting high damping in the bridge. For higher frequencies the
measured mobility resembles the region where the mobility tends towards that of the rail alone. Although no
individual modes can be seen, the peaks and troughs in the mobility suggest that the finite length of the bridge
affects the mobility even at high frequencies.

5.2.2. Noise and vibration

The spatially averaged vibration velocity on the deck has been calculated by averaging the measured
vibration at each measurement position for all 48 trains. The results are plotted in one-third octave bands
together with the range of results seen in the tests in Fig. 6(a). Using the improved model of Sections 3 and 4,
the predictions of the spatially averaged deck vibration are obtained and also plotted in Fig. 6(a). The input
parameters for the model were the known geometrical and material properties for the bridge, typical light rail
parameters for the rolling stock and, as no wheel or rail roughness measurements were taken in this test, an
average UK rail/wheel roughness has been used as excitation input [17].

It can be seen in Fig. 6(a) that the model predicts the deck vibration well between 50Hz and 1 kHz with
errors of no more than 4 dB at discrete frequency bands. For frequencies less than 50Hz the model under-
predicts the average deck vibration. This is likely to be due to the use of an assumed wheel/rail roughness as
well as limitations of the SEA model at low frequencies. For frequencies higher than 1 kHz the predicted deck
vibration diverges from the measured results. It is possible that this is again due to the assumed roughness
spectra. Furthermore, due to the high dynamic range of the measured vibration and high level of isolation at
high frequencies the measured results are expected to be less reliable.

The average sound pressure level measured underneath the viaduct for the 48 trains is plotted in Fig. 6(b)
together with the range of levels seen in the tests. The sound power predictions for the viaduct have been
converted to a total sound pressure spectrum by considering viaduct as line source [18]. The results are also
plotted in Fig. 6(b). It can be seen that the errors in the noise predictions are larger than for the deck vibration
predictions at some discrete frequency bands. However, the predictions are within the 4 dB levels measured in
the test at most frequencies up to approximately 600Hz. Again, errors in this frequency range are expected to
be due to an assumed roughness spectrum used as the input excitation. Above 600Hz the noise level predicted
using the model rolls off sharply while the measured spectrum rolls off less sharply. The spatially averaged
deck vibration predictions shown in Fig. 6(a) diverge from measurements at approximately 1 kHz. Therefore
under-prediction of the noise radiated by the bridge at high frequencies is expected. Furthermore, the
prediction shown in Fig. 6(b) is for the noise radiated by the bridge structure alone and takes no account of
other sources such as the rolling noise. It is likely that the measured spectrum contains a contribution from the
rolling noise at high frequencies.
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6. Conclusions and further work

A bridge noise calculation model has been presented that, with modification to the track model at low
frequencies and the model for the mobility of the bridge at high frequencies, rapidly predicts average deck
vibration and sound pressure level radiated by the bridge with a reasonable level of accuracy between 40Hz
and 1 kHz. It is thought that an improved level of accuracy could be achieved if a measured wheel/rail
roughness spectrum could be used. The model has no requirement of detailed finite element calculations and
takes less than 1min to run in this case.

The test case described consisted of a very simply constructed viaduct and the track was directly fastened to
the viaduct. The track model described in Section 3 has the capability for modelling track configurations with
more than one layer of fastening stiffness, such as resilient baseplates or ballasted track. Therefore it is
desirable to perform further validation of the models on more complex viaducts with different track
configurations.
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